Human Hand Recognition Using IPCA-ICA Algorithm
نویسندگان
چکیده
A human hand recognition system is introduced. First, a simple preprocessing technique which extracts the palm, the four fingers, and the thumb is introduced. Second, the eigenpalm, the eigenfingers, and the eigenthumb features are obtained using a fast incremental principal non-Gaussian directions analysis algorithm, called IPCA-ICA. This algorithm is based on merging sequentially the runs of two algorithms: the principal component analysis (PCA) and the independent component analysis (ICA) algorithms. It computes the principal components of a sequence of image vectors incrementally without estimating the covariance matrix (so covariance-free) and at the same time transforming these principal components to the independent directions that maximize the non-Gaussianity of the source. Third, a classification step in which each feature representation obtained in the previous phase is fed into a simple nearest neighbor classifier. The system was tested on a database of 20 people (100 hand images) and it is compared to other algorithms.
منابع مشابه
Appearance Based 3D Object Recognition Using IPCA-ICA
Fast incremental non Gaussian directional analysis (IPCA-ICA) is proposed as a linear technique for recognition [1]. The basic idea is to compute the principal components as sequence of image vectors incrementally, without estimating the covariance matrix and at the same time transforming these principal components to the independent directions that maximize the non–Gaussianity of the source. I...
متن کاملFacial Expression Recognition Using Texture Features
Shalu Gupta, Indu Bala ECE Department, Lovely Professional University, Jalandhar, Punjab(India) [email protected], [email protected] Abstract This paper provides a new approach to recognize facial expressions. In this paper, facial expression recognition is based on appearance based features or we can say that low level features. We introduced the new approach Improved Principle Compone...
متن کاملEvolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition
Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computatio...
متن کاملAn Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملBi-2DPCA: A Fast Face Coding Method for Recognition
Face recognition has received significant attention in the past decades due to its potential applications in biometrics, information security, law enforcement, etc. Numerous methods have been suggested to address this problem [1]. Among appearance-based holistic approaches, principal component analysis (PCA) turns out to be very effective. As a classical unsupervised learning and data analysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007